EXPERIMENT 3

Incline

GOAL

- To study the acceleration of an object sliding down an incline
- To determine the coefficient of the kinetic friction between the inclined surface and the sliding object

THEORY

Consider a sled sliding down an inclined surface with an angle of inclination θ (Fig. 1). While the boy the sled is moving down, three forces are acting on the system sled-boy: the gravity force $\mathbf{F}_{\mathbf{G}}$, the normal force $\mathbf{F}_{\mathbf{N}}$ and the friction force $\mathbf{F}_{f r}$.

Fig. 1. Motion on the inclined surface

Because the system is moving, we have to consider friction as kinetic. We can apply Newton's First Law to determine the net force:

$$
\begin{equation*}
\mathbf{F}_{n e t}=\mathbf{F}_{G}+\mathbf{F}_{N}+\mathbf{F}_{f r} \tag{1}
\end{equation*}
$$

According to Newton's Second Law,

$$
\begin{equation*}
\mathbf{F}_{n e t}=m \boldsymbol{a} \tag{2}
\end{equation*}
$$

where \boldsymbol{a} is acceleration and m is the mass of the system (sled and boy).
Let's expand the equation (2) on x and y directions referring to the diagram in Fig. 1:

$$
\begin{gather*}
m g \sin \theta-F_{f r}=m a \tag{3}\\
-m g \cos \theta+F_{N}=0 \tag{4}
\end{gather*}
$$

Consider

$$
\begin{equation*}
F_{f r}=\mu_{k} F_{N} \tag{5}
\end{equation*}
$$

where μ_{k} is the coefficient of the kinetic friction between the surface and sled

Obtaining $F_{N}=m g \cos \theta$ from (4), we can modify (3) as:

$$
\begin{equation*}
m g \sin \theta-\mu_{k} m g \cos \theta=m a \tag{6}
\end{equation*}
$$

Now we can solve (6) for the coefficient of the kinetic friction:

$$
\begin{equation*}
\mu_{k}=\frac{g \sin \theta-a}{g \cos \theta} \tag{7}
\end{equation*}
$$

PROCEDURE

Inclination

Sometimes it is complicated to measure the angle of inclination directly. As you can see from formula (7), in fact, we need the values of $\sin \theta$ and $\cos \theta$ to determine the coefficient of kinetic friction.

Fig. 2. Geometry of the inclined surface

Referring to Fig. 2, we can obtain:

$$
\begin{align*}
& \sin \theta=\frac{h}{d} \tag{8}\\
& \cos \theta=\frac{b}{d} \tag{9}
\end{align*}
$$

During the experiment, it is easier to measure the height and the base of the triangle. The hypotenuse d can be evaluated using the Pythagoras Theorem:

$$
\begin{equation*}
d^{2}=b^{2}+h^{2} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
b=\sqrt{d^{2}-h^{2}} \tag{11}
\end{equation*}
$$

Using (11) in (9), we obtain the following:

$$
\begin{equation*}
\cos \theta=\frac{\sqrt{d^{2}-h^{2}}}{d} \tag{12}
\end{equation*}
$$

Acceleration

The distance covered by an object moving at the acceleration a during time t can be determined as:

$$
\begin{equation*}
d=v_{0} t+\frac{1}{2} a t^{2} \tag{13}
\end{equation*}
$$

where v_{0} is the initial velocity of the object. By setting up $v_{0}=0$, we can obtain:

$$
\begin{equation*}
a=\frac{2 d}{t^{2}} \tag{14}
\end{equation*}
$$

Measurements

1. Construct an inclined surface using a board, as shown in Fig. 2.
2. Measure the height and base of the right triangle, whose hypotenuse is formed by the board.
3. Release a rectangular block or bar from the apex (top vertex) of the triangle, starting simultaneously with a stopwatch. Stop the stopwatch when the block reaches another end of the hypotenuse.
4. Repeat step 3 for five different heights and complete the following table considering $g=$ $9.8 \mathrm{~m} / \mathrm{s}^{2}$:

Table 1

$b(\mathrm{~m})$	$h(\mathrm{~m})$	$t(\mathrm{~s})$	$a\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	μ_{k}

5. Evaluate the average value of the coefficient of the kinetic friction using the last column of Table 1.
